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We find new analytic solitary-wave solutions, having a nonzero background at infinity, of the
coupled Korteweg-De Vries equation, using the auxiliary function method. We study the dynamical
properties of the solitary-waves by numerical simulations. It is shown that the solitary-waves can be
stable or unstable, depending on the coefficients of the model. We study the interaction dynamics by
using the solitary-waves as initial profiles to show that the mass and energy of the coupled Korteweg-
De Vries can be conserved for a negative third-order dispersion term. — PACS numbers: 03.40.Kf,
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1. Introduction

In this paper, we consider a system of the coupled
Korteweg-De Vries (cKdV) equations

ut + αvvx + β uux + γuxxx = 0,

vt + δ (uv)x + εvvx = 0,
(1)

where α , β , δ , and ε are all nonzero constant, related
to a physical situation [1 – 3]. Here, αvvx acts as a
force term on the first Korteweg-De Vries (KdV) equa-
tion, which is coupled to the second equation of sim-
ilar type, but, without any dispersion term. The cKdV
type equations have been widely studied in fields of
physical and engineering sciences such as nonlinear
optics, superconductors, plasmas, fluid dynamics and
supersymmetry [4, 5]. Several solitary-wave solutions
of the cKdV equation have been found in [1, 2]. More
recently, Tian and Gao [3] have reported some exact
analytic solitary-wave solutions of (1), using an auto-
Bäcklund transformation.

The purpose of this paper is to find new analytic
solitary-wave solutions of (1) by using the auxiliary
differential equation method [6, 7] and investigate their
dynamical behavior. In Section 2 we introduce the aux-
iliary differential equation method for finding solitary-
wave solutions and perform symbolic computations. In
Section 3 we investigate the dynamics of the solitary-
waves and their interactions by a numerical method.
The conclusions are in Section 4.
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2. The Auxiliary Equation Method and Analytic
Solitary-wave Solutions

In this section, we first describe the auxiliary equa-
tion method [6, 7]. Suppose we are given coupled non-
linear partial differential equations (NLPDE) for u(x, t)
and v(x, t) in the form

H1(u,v,ux,vx,ut ,vt ,uxx,vxx,utt ,vtt ,uxt ,vxt . . .)=0,

H2(u,v,ux,vx,ut ,vt ,uxx,vxx,utt ,vtt ,uxt ,vxt . . .)=0.
(2)

Introducing the similarity variable ξ = kx − ωt, the
traveling wave solutions of u(ξ ) and v(ξ ) satisfy the
ODEs

G1(u,v,uξ ,vξ ,uξ ξ ,vξ ξ ,uξ ξ ξ ,vξ ξ ξ , . . .) = 0,

G2(u,v,uξ ,vξ ,uξ ξ ,vξ ξ ,uξ ξ ξ ,vξ ξ ξ , . . .) = 0.
(3)

We seek the solution of (3) in the forms

u(ξ ) =
n

∑
i=0

uiz
i(ξ ), v(ξ ) =

m

∑
j=0

v jz
j(ξ ), (4)

where ui (i = 1,2, ...,n) and vi ( j = 1,2, . . . ,m) are all
real constants to be determined, the orders m and n are
positive integers which can be readily determined by
balancing the highest order derivative term with the
highest power nonlinear term in (3). The main point of
the present method is to introduce z(ξ ) as the solutions
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Fig. 1. The profiles of bright
and dark solitary-waves u(x,0) and
v(x,0), respectively. The parame-
ters a,b, and c satisfy the auxiliary
constraint a = b2/(4c) > 0 in (11).
For the plots, α = 1, β = 6, γ = 1,
b = 1, c = 1, and the wave num-
ber k = 2 are used. As the strength
of the nonlinear dispersion term ε
is varied, the amplitude of u(x,0)
increases but that of v(x,0) de-
creases.

of the auxiliary ordinary differential equation
(

dz
dξ

)2

= az2(ξ )+ bz3(ξ )+ cz4(ξ ), (5)

where a,b, and c are real parameters. Then

z(ξ ) =




−absech2(±
√

a
2 ξ )

b2−ac(1−tanh(±
√

a
2 ξ ))2

when a > 0, type I,

2asech(
√

aξ )√
b2−4ac−bsech(

√
aξ )

when
√

b2 −4ac > 0

and a > 0, type II,

(6)

are the exact solutions of (5).
To look for the traveling wave solutions of (1) in

particular, we make the transformations u(x,t) = u(ξ )
and v(x, t) = v(ξ ), leading to

(β k u−ω)uξ + αk vvξ + γk3 uξ ξ ξ = 0,

δk uξ v+(δk u−ω + εk v)vξ = 0.
(7)

By balancing the highest order derivative term u ξ ξ ξ
with the highest order nonlinear term uuξ , we find
n = 2. Similarly, we find m = 2 from the balance of
vvξ and uuξ in the second equation of (1). Thus, we
use the ansatz (4) for (1) as

u(ξ ) = u0 + u1 z(ξ )+ u2 z(ξ )2,

v(ξ ) = v0 + v1 z(ξ )+ v2 z(ξ )2.
(8)

By substituting (5) and (8) into (7) and setting the co-
efficients of z j(ξ )( j = 0,1,2, . . . ,7) to zero, we find a
set of algebraic equations for ui, vi, a, b, c, k, and ω as

−u1ω + u1β u0k + γ k3u1a+ α v0v1k = 0,

−bu1ω + bu1β u0k + 4bγ k3u1a+ bα v0v1k

+aα kv1
2 −2au2ω + 2au2β u0k + 2aα kv0v2

+8γ u2k3a2 + aβ u1
2k = 0,

−cu1ω + cu1β u0k + 7cγ k3u1a+ cα v0v1k

+3γ k3u1b2 + bα kv1
2 −2bu2ω + 2bu2β u0k

+2bα kv0v2 + 23bγ u2k3a+ bβ u1
2k

+3akα v1v2 + 3akβ u1u2 = 0,

9cγ k3u1b+ cα kv1
2 −2cu2ω + 2cu2β u0k

+2cα kv0v2 + 32cγ u2k3a+ cβ u1
2k

+15γ u2k3b2 + 3bkα v1v2 + 3bkβ u1u2

+2akβ u2
2 + 2akα v2

2 = 0,

k(6k2γ u1c2 + 39k2cγ u2b+ 2u2
2β b

+3cα v1v2 + 3cβ u1u2 + 2bα v2
2) = 0,

u2
2β + 12ck2γ u2 + α v2

2 = 0,

v1ε v0k + δ u1kv0 − v1ω + v1δ u0k = 0,

2av2δ u0k−2av2ω + 2aδ u2kv0 + 2av2ε v0k

+2aδ u1kv1 + av1
2ε k + bv1ε v0k + bδ u1kv0

−bv1ω + bv1δ u0k = 0,

3aδ u1kv2 + 3av2ε v1k + 3aδ u2kv1 + 2bv2δ u0k

−2bv2ω + 2bδ u2kv0 + 2bv2ε v0k + 2bδ u1kv1

+bv1
2ε k + cv1ε v0k + cδ u1kv0 − cv1ω

+cv1δ u0k = 0,

4aδ u2kv2 + 2av2
2ε k + 3bδ u1kv2 + 3bv2ε v1k

+3bδ u2kv1 + 2cv2δ u0k−2cv2ω + 2cδ u2kv0

+2cv2ε v0k + 2cδ u1kv1 + cv1
2ε k = 0,
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Fig. 2. The profiles of dark and
bright solitary-waves u(x,0) and
v(x,0), respectively. Due to nega-
tive third-order dispersion coeffi-
cient, i. e., γ = −1, the polarities
of u(x,0) and v(x,0) are reversed
in comparison with Figure 1. The
parameters b = −1 and c = 1 are
used to satisfy the auxiliary con-
straint a = b2/(4c) > 0. For the
plots, α = 1, β = 6, γ =−1, b = 1,
c = 1, and the wave number k = 2
are used. The amplitudes of both
u(x,0) and v(x,0) increase as the
strength of the combined nonlinear
term, i. e., δ (uv)x, is increased.
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Fig. 3. (a), (b) Evolution of numerically simulated u(x,t) and v(x,t), respectively, with the initial profiles (15), the parameters
b = 1 and c = 1, and the wave number k = 1. (c) Snap shots of the numerically simulated wave profiles at t = 20. Both the
bright and dark solitary-waves emit radiation in form of an oscillating tail. Note that the velocities of the two solitary-waves
are in phase.
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Fig. 4. (a) Evolution of the normalized
mass and energy M(t) and E(t) for the
bright solitary-wave u(x,t) in Figure 3.
E(t) changes slightly during the evolu-
tion, while M(t) does not deviate from
its initial value. (b) Both the mass and
energy of the dark solitary-wave v(x,t)
are conserved.

k(4bδ u2v2 + 2bv2
2ε + 3cδ u1v2 + 3cv2ε v1

+3cδ u2v1) = 0,

2cv2k(2u2δ + v2ε) = 0. (9)

We obtain the solution of the overdetermined set of al-
gebraic equations in (9):

u0 =
ω ε2 + 4α δ ω − γ k3aε2

(β ε2 + 4α δ 2)k
,

u1 = − 6γ k2ε2b
β ε2 + 4α δ 2 , u2 = − 12γ k2cε2

β ε2 + 4α δ 2 ,

v0 =
2ε (−δ ω + δ γ k3a+ ω β )

(β ε2 + 4α δ 2)k
,

v1 =
12δ γ k2ε b

β ε2 + 4α δ 2 , v2 =
24γ k2cε δ

β ε2 + 4α δ 2 ,

(10)

under the constraint among a,b, and c as

b2 −4ac = 0. (11)

This condition in fact indicates that the solution set in
(10) satisfies only the type I solution in (6), if, in con-
junction with the constraint, a = b2/4c > 0, we require
the parameter c to satisfy c > 0. Upon substituting all
this into (8), we find new analytic solitary-wave solu-
tions of (1), with k and ω as free parameters, in the

form

u(x, t) =
ω ε2 + 4α δ ω − γ k3aε2

(β ε2 + 4α δ 2)k

+
6γ k2ε2b

β ε2 + 4α δ 2 Λ(x, t)

− 12γ k2cε2

β ε2 + 4α δ 2 Λ(x, t)2,

v(x, t) =
2ε (−δ ω + δ γ k3a+ ω β )

(β ε2 + 4α δ 2)k

− 12δ γ k2ε b
β ε2 + 4α δ 2 Λ(x, t)

+
24γ k2cε δ

β ε2 + 4α δ 2 Λ(x, t)2,

(12)

where

Λ(x, t) =
absech2(

√
a

2 (kx−ωt))

b2 −ac [1− tanh(
√

a
2 (kx−ωt))]2

. (13)

Figures 1 and 2 show the profiles of the solitary-
waves u(x,0) and v(x,0) in (12), respectively, for dif-
ferent model coefficients and a,b, and c satisfying (11).
It is worth noting that, depending on the signs of the
model coefficients, for example for γ < 0, the polari-
ties of u(x,0) and v(x,0) can be reversed, as shown in
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Fig. 5. Evolutions of the numerically simulated (a) dark solitary-waves u(x,t), and (b) bright solitary-waves v(x,t), with the
initial profiles (15). Note the reversed polarities of the solitary-waves in comparison with Fig. 3, due to negative γ value. For
the simulations, b = 1 and c = 1, and the wave number k = 1 are used. (c) Snap shots of the numerically simulated wave
profiles at t = 40. The heights of both the bright and dark solitary-waves decrease and radiation in form of an oscillating front
is emitted. Note that the velocities of the two solitary-waves are in phase.

Fig. 2, in comparsion with those in Figure 1. Figure 1
shows the effect of the nonlinear dispersion term ε on
the amplitudes of the solitary-waves, i.e., the amplitude
of u(x,0) increases but that of v(x,0) decreases if ε is
increased. However, as shown in Fig. 2, the amplitudes
of both u(x,0) and v(x,0) increase as the strength of
the combined nonlinear term, i.e., δ (uv)x, is increased.

Finally, we note that the nonzero backgrounds at in-
finity, i. e., u0 and v0, can be made to zero by imposing
special dispersion relations for u and v, as

u0 =
ω ε2 + 4α δ ω − γ k3aε2

(β ε2 + 4α δ 2)k
= 0

=⇒ ωu =
γ aε2

ε2 + 4α δ
k3,

v0 =
2ε (−δ ω + δ γ k3a+ ω β )

(β ε2 + 4α δ 2)k
= 0

=⇒ ωv =
δ γ a

δ −β
k3.

(14)

However, in the following analysis we will investi-
gate the dynamical properties of the solitary- waves in
nonzero background, i.e, by using the solutions in (12)
as the initial wave profiles.

3. Numerical Simulations

In this section we numerically integrate (1) to un-
derstand the stability and dynamics of the solitary-
wave solutions discussed in Section 2. Here, “stabil-
ity” means that the analytic solitary-wave preserves its
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mass and energy M(t) and E(t) for
the (a) dark and (b) bright solitary-
waves, respectively, as simulated in
Fig. 5, which indicate their con-
servations. With negative third or-
der dispersion γ = −1.2, more sta-
ble wave propagation is observed in
comparison with the positive γ case
in Figure 4.

initial profile, when it is substituted to (1) and numer-
ically integrated for a long propagation time without
losing its energy by radiation. The numerical scheme
used in this work is based on the time advance using
the Runge-Kutta fourth-order scheme and a pseudo-
spectral method using the discrete fast Fourier trans-
formation in the spatial discretization [8], applying pe-
riodic boundary conditions. The numerical errors in
the spatial discretization were controlled by varying
the number of discrete Fourier modes between 128 and
1024 and various time steps between 10−5 and 10−3.

In the following, we first investigate the stability of
the solitary-wave solutions by taking the initial profiles
in the form

u(x,0) =
6γ k2ε2b

β ε2 + 4α δ 2 Λ(x)− 12γ k2cε2

β ε2 + 4α δ 2 Λ(x)2,

v(x,0) = − 12δ γ k2ε b
β ε2 + 4α δ 2 Λ(x)+

24γ k2cε δ
β ε2 + 4α δ 2 Λ(x)2,

(15)

where

Λ(x) =
absech2(

√
a

2 (kx))

b2 −ac [1− tanh(
√

a
2 (kx))]2

. (16)

Before proceeding, we note that (1) is in gen-
eral a non-integrable equation, because it is not cer-

tain whether (1) contains infinite numbers of time-
independent integrals. However, as at least the funda-
mental solitary-wave solutions indeed exist, we want
to define the simplest two such integrals, namely, the
normalized mass and energy, as

M(t) =
∫ ∞

−∞
v(x, t)dx/

∫ ∞

−∞
v(x,0)dx (17)

and

E(t) =
∫ ∞

−∞
v(x, t)2dx/

∫ ∞

−∞
v(x,0)2dx, (18)

to further understand the dynamics of the waves.
Figures 3a and b show the evolutions of the bright

and dark solitary-waves u(x, t) and v(x, t), respec-
tively, for the coefficients used in Figure 1. The bright
solitary-wave becomes slightly unstable by emitting
radiation in the form of an oscillatory tail, and the
width of the wave spreads, as shown in Fig. 3c, while
the dark solitary-wave maintains its initial shape up
to t ≈ 10, after which it also radiates. Interestingly,
as calculated in Figs. 4a and b, the normalized mass
M(t) does not deviate from its initial values for both
the bright and the dark solitary-waves. However, the
normalized energy of the bright solitary-wave E(t) in
Fig. 4a shows a variation from its initial value, due
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Fig. 7. Interaction dynamics of two solitary-waves with the initial profiles in (19), where the separation is η = 3. (a), (d) Evo-
lutions of initially combined two bright and dark solitary-waves, respectively. (b), (e) Snap shots of the numerically simulated
wave profiles at t = 60. The separation between the two solitary-waves increases and two bright solitary-waves with different
amplitudes appear in (b). Similar behavior is observed for the dark solitary-waves in (e). (c), (f) While M(t) for the bright
and dark solitary-waves is conserved, the energy of the bright solitary-waves slightly increases, but the energy of the dark
solitary-waves is conserved.

to the wave-width spreading and the radiation emis-
sion, while the energy of the dark solitary-wave is con-
served as shown in Fig. 4b, in spite of the oscillatory
nature of radiation in the tail. From these observations
we conclude that the solitary-waves for the model co-
efficients are marginally unstable due to radiation loss
during their propagation.

In Fig. 5, we simulate the evolutions of the bright
and dark solitary-waves of the reversed polarities, i.e.,
γ → −γ , but keeping the same coefficients as in Fig-
ure 3. In comparison with those in Fig. 3, the solitary-
waves are more stable and the radiation in the oscil-
latory tail is less conspicuous during a longer propa-
gation time, which is clearly demonstrated in Fig. 6,
where M(t) and E(t) for both waves maintain their
initial values. As it is expected, the velocities of the

bright and dark solitary-waves are in phase, as depicted
in Fig. 6c, since we set k = 1 and ω = 1 for both
waves. Though not presented here, we have confirmed
by further numerical simulations that so long as the
third-order dispersion term is negative (γ < 0), both the
bright and dark solitary-waves are stable, regardless of
the strength of the higher order nonlinear terms, i. e.,
δ (uu)x and εvvx.

We now would like to understand the interaction dy-
namics of the bright and dark solitary-waves with the
initial profiles

u(x,0)int = u(x+ η)+ u(x−η),

v(x,0)int = v(x+ η)+ v(x−η)
(19)

where η is the separation between the solitary-waves.
By using as an example the same set of coefficients
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Fig. 8. Interaction dynamics of two solitary-waves with the initial profiles in (19), where the separation is η = 6. (a), (d) Evo-
lutions of initially combined two bright and dark solitary-waves, respectively. (b), (e) Snap shots of the numerically simulated
wave profiles at t = 70. The initial separation distance between the two bright solitary-waves is maintained in (b). Similar
behavior is observed for the dark solitary-waves in (e). (c), (f) While M(t) for the bright and dark solitary-waves is conserved,
the energy of the bright solitary-waves slightly increases, but the energy for the dark solitary-waves is conserved.

as in Fig. 3, the interaction dynamics of the solitary-
waves separated by η = 3 is simulated in Figure 7.
Due to the short separation distance, the two bright
solitary-waves in Fig. 7a are initially combined, how-
ever their interaction results in an increase of the sepa-
ration distance between the waves, increase of the lead-
ing wave’s amplitude, and oscillatory radiation in the
tail, as shown in Fig. 7b for t = 60. Figure 7c shows
the conservation of the normalized mass but a slight
increase of E(t) due to a weak instability, which may
come from the unbalance between the dispersion and
nonlinear terms in (1). Similar dynamical behaviors of
the interacting two dark solitary-waves are observed in
Figsures 7d – f. Even in the presence of the oscillatory
radiation, it shows that the normalized mass and energy

are conserved. This stability may come from the bal-
ance of the nonlinear terms, i. e., δ and ε in (1). After
many simulations with different sets of coefficients, by
fixing α = 1 and β = 6 but varying −1.2 < γ < −1.0
and 1.0 < δ , ε < 1.4, we find a very similar dynam-
ical behavior, as in Figure 7. Finally, we simulate the
effect of the separation distance and larger nonlinear
dispersion η on the interaction of the solitary-waves
in Fig. 8, by using the same coefficients as in Fig. 7,
but η = 6 and ε = 1.4. It is clearly demonstrated in
Figs. 5c and e that at larger separation distance both
the bright and dark solitary-waves evolve without any
interaction. However, in comparision with Fig. 3a, the
two bright solitary-waves separated by η = 6 are more
stable during the propagation time.
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4. Conclusions

In this work, we have found new analytic solitary-
waves, having nonzero background at infinity, of the
coupled Korteweg-De Vries equations [1 – 3], by uti-
lizing the auxiliary equation method [6, 7]. It is shown
that the nonzero background can be removed by im-
posing special dispersion relations as shown in (14).
The bright and dark solitary-wave solutions in (12) ex-
ist under the constraints a > 0 and b2 − 4ac = 0, and
their polarities depend on the sign of the third-order
dispersion term γ in (1). We have shown by numer-
ical simulations the dynamics of the bright and dark
solitary-waves in Figs. 3 and 5, and the evolution of
the normalized mass and energy in Figs. 4 and 6. De-
pending on the sign of the third-order dispersion term,
it has been demonstrated that the waves can be stable

or unstable during their evolutions, as shown in Fig-
ures 3 – 6. By taking the two stable solitary-waves as
initial profiles, as an example, we have simulated the
interaction dynamics of the waves separated by η = 3
in Fig. 7, where the interactions result in an increase of
the separation distance between the waves, increase of
the leading wave’s amplitude, and oscillatory radiation
in the tail. However, more stable propagations are ob-
served in the context of the mass and energy conserva-
tions. Finally, in Fig. 8, it has been demonstrated that at
larger separation distance the solitary-waves maintain
their initial profiles along the propagation distance.
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